Small area prediction based on unit level models when the covariate mean is measured with error

نویسندگان

  • Andreea Luisa Erciulescu
  • Emily J. Berg
  • Song X. Chen
  • Daniel Nettleton
  • Jarad Niemi
چکیده

Agencies and policy makers are interested in constructing reliable estimates for areas with small sample sizes, where areas often refer to geographic areas and demographic groups. The estimation for such areas is known as small area estimation. Procedures based on models have been used to construct estimates for the small area means, by exploiting auxiliary information. Mixed models are suitable small area models because they combine different sources of information and contain different sources of error. The models studied in this dissertation are unit level generalized linear mixed models in situations where the mean of an auxiliary variable is subject to estimation error. Different cases of auxiliary information are considered. Prediction methods for the small area mean, estimation of the prediction mean squared error (MSE) and confidence intervals (CIs) for the small area means are presented for the case when the response variable is nonnormal. In the simulation studies, the response variable is binary. In the first study, two methods for constructing small area mean predictions are considered. The first method is based on the conditional distribution of the random area effects given the response variables. The second method, called the ’plug-in method’ is based on the direct substitution of the predicted random area effects into the small area mean expression. Using a simulation study, we show that the ’plug-in’ predictor for the small area mean can have sizeable bias. The estimation of prediction MSE for small area models is complicated, particularly in a nonlinear model setting. In the second study, the efficiency gains associated with the random specification for the auxiliary variable measured with error are demonstrated. The prediction MSE is smaller when additional auxiliary information is available and included in the estimation. The effect of including auxiliary information, if available, in the estimation is smaller for

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی شبکه عصبی مصنوعی برای مدل‌بندی پاسخ‌های دو متغیره آمیخته و کاربرد آن در داده‌های پزشکی

Background & Objective: Mixed outcomes arise when, in a multivariate model, response variables measured on different scales such as binary and continuous. Artificial neural networks (ANN) can be used for modeling in situations where classic models have restricted application when some of their assumptions are not met. In this paper, we propose a method based on ANNs for modeling mixed binary a...

متن کامل

Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation

When covariates are measured with error, inference based on conventional generalized linear models can yield biased estimatesof regressionparameters. This problem can potentiallybe rectiŽed byusing generalizedlinear latent and mixedmodels (GLLAMM), including a measurementmodel for the relationship between observed and true covariates. However, the models are typically estimated under the assump...

متن کامل

Some New Developments in Small Area Estimation

Small area estimation has received a lot of attention in recent years due to growing demand for reliable small area statistics. Traditional area-specific estimators may not provide adequate precision because sample sizes in small areas are seldom large enough. This makes it necessary to employ indirect estimators based on linking models. Basic area level and unit level models have been extensiv...

متن کامل

Small Area Estimation of the Mean of Household\'s Income in Selected Provinces of Iran with Hierarchical Bayes Approach

Extended Abstract. Small area estimation has received a lot of attention in recent years due to necessity demand for reliable small area statistics. Direct estimator may not provide adequate precision, because sample size in small areas is seldom large enough. Hence, by employing models that can use auxiliary information and area effects in descriptions, one can increase the precision of direct...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016